Advanced polymer techniques
Advanced polymer techniques are designed to produce some of the unique products and latest industrial developments and fabrication methods. These methods originate from both industry and academia for the growth of polymer applications and meeting the demands of the future. Polymers are combined with other materials such as metal to create hybrids to offer the properties of both the materials. Polymer-metal hybrids are produced by friction spot joining which is used to join lightweight alloys such as aluminium and magnesium having high performance composites and thermoplastics. The friction spot welding machine melts and deforms the metal due to heat friction and compressive force. A metallic hub is created which is inserted through the composite. At the same time a thin layer of molten polymer matrix is displaced around the joining area. The joint is formed later after the fixation of the polymeric molten layer. These are the two phenomena involved in the joining mechanism. Similar, methods are being developed for producing more and more unique polymers having advanced architecture to be utilized in a more specified application.
- Mechanisms of liquid crystallization and gelation
- Crystalline morphology and crystallization mechanism
- Polymer- metal hybrid structures
- Advanced polymer architectures
- Morphology formation mechanism by liquid-liquid phase separation
- Application of morphology formation to polymer materials
Related Conference of Advanced polymer techniques
23rd International Conference and Exhibition on Materials Science and Chemistry
32nd International Conference on Advanced Materials, Nanotechnology and Engineering
Advanced polymer techniques Conference Speakers
Recommended Sessions
- Advanced polymer techniques
- Advanced technologies in polymer synthesis
- Biodegradable polymers
- Biomaterials and Biopolymers
- Bioplastics and Biocomposites
- Commercialization of biopolymers
- Green polymer synthesis
- Nanopolymers and modern day application
- Polymer engineering and models
- Polymer fundamentals
- Polymer manufacturing
- Polymer nanotechnology
- Polymers for energy applications
- Principles of polymer chemistry
- Renewable resources and bio based polymers
- Role of polymers in biological systems
- Solid waste management techniques of polymers
- Synthetic polymers
Related Journals
Are you interested in
- Carbon Nanostructures and Graphene - Materials Chemistry 2025 (France)
- Ceramics in Materials Science - Materials Chemistry 2025 (France)
- Chemical Engineering - Materials Chemistry 2025 (France)
- Fracture, Fatigue and Failure of Materials - Materials Chemistry 2025 (France)
- Industrial applications of crystallization - Materials Chemistry 2025 (France)
- Materials Science and Chemistry - Materials Chemistry 2025 (France)
- Mineralogy - Materials Chemistry 2025 (France)
- Nano pharmaceuticals - Materials Chemistry 2025 (France)
- Nanodentistry - Materials Chemistry 2025 (France)
- Nanotechnology Applications - Materials Chemistry 2025 (France)
- Photonic and Optical Materials - Materials Chemistry 2025 (France)
- Polymer Science and Applications - Materials Chemistry 2025 (France)
- Science and Technology of Advanced Materials - Materials Chemistry 2025 (France)
- Solid-State Chemistry and Physics - Materials Chemistry 2025 (France)
- Tissue Engineering - Materials Chemistry 2025 (France)
