Solid waste management techniques of polymers
A major part of municipal solid waste comprises of packaging material waste and it has caused increasing environmental concerns, resulting in the induction of strict environmental Regulations in order to reduce solid waste. Among other materials, a wide range of petroleum-based polymers is currently being used in packaging applications. They are predominantly non-biodegradable and particularly difficult to recycle or reuse due to various levels of contamination and complex composites. Over the years, the development of biodegradable packaging materials from renewable natural resources has received increasing attention, particularly in European countries. Significant progress has been done to produce biodegradable materials with similar functionality to that of the oil-based synthetic polymers. It is anticipated that, as the materials are from renewable resources and biodegradable, they would contribute to sustainable development and if properly managed will decrease their environmental impact upon disposal. But when it to the disposal of current generation of synthetic plastics like the ones found in consumer products are disposed in landfills which undergo biodegradation and photodegradation. Polymers such as polyacrylics and polyethylenes are not associated with significant polymer degradation or mobility. Landfill disposal is an effective means to manage polymer waste and additional waste management techniques can be applied which includes, recycling, reuse, composting and waste-to-energy incineration. More recent methods of polymer recycling are also being developed, one such method is selective dissolution which utilises xylene as a solvent to dissolve the polymer resin. This process is repeated at different temperatures to separate the various polymers within the mix, which can be pelletized later for plastic industries.
- Biodegradation of synthetic polymers
- Incineration
- Mechanical recycling of single polymeric plastics
- Chemical recycling techniques of polymers
- Selective dissolution
Related Conference of Solid waste management techniques of polymers
32nd International Conference on Advanced Materials, Nanotechnology and Engineering
39th International Conference on Materials Science and Engineering
12th International Conference and Expo on Ceramics and Composite Materials
24th International Conference and Exhibition on Materials Science and Chemistry
Solid waste management techniques of polymers Conference Speakers
Recommended Sessions
- Advanced polymer techniques
- Advanced technologies in polymer synthesis
- Biodegradable polymers
- Biomaterials and Biopolymers
- Bioplastics and Biocomposites
- Commercialization of biopolymers
- Green polymer synthesis
- Nanopolymers and modern day application
- Polymer engineering and models
- Polymer fundamentals
- Polymer manufacturing
- Polymer nanotechnology
- Polymers for energy applications
- Principles of polymer chemistry
- Renewable resources and bio based polymers
- Role of polymers in biological systems
- Solid waste management techniques of polymers
- Synthetic polymers
Related Journals
Are you interested in
- Additive Manufacturing – 3D Printed Materials - Ceramics 2026 (Italy)
- Additive Manufacturing – 3D Printing - Material science-2026 (Italy)
- Advanced Ceramics – High Performance - Ceramics 2026 (Italy)
- Advanced Materials and Functional Devices - ADVANCED MATERIALS 2026 (France)
- Advanced Materials and Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Bio-Ceramics – Healthcare Innovations - Ceramics 2026 (Italy)
- Biomaterials – Healthcare Innovations - Material science-2026 (Italy)
- Biomedical Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Carbon Nanostructures and Graphene - ADVANCED MATERIALS 2026 (France)
- Ceramic Coatings – Wear & Thermal Protection - Ceramics 2026 (Italy)
- Ceramic-Polymer Hybrids – Multifunctional Materials - Ceramics 2026 (Italy)
- Ceramics – High-Performance Materials - Material science-2026 (Italy)
- Composite Materials - ADVANCED MATERIALS 2026 (France)
- Composites – Lightweight & Strong - Material science-2026 (Italy)
- Computational Materials – Modeling & Simulation - Material science-2026 (Italy)
- Energy & Electronic Materials – Functional Ceramics - Ceramics 2026 (Italy)
- Energy Materials – Batteries & Storage - Material science-2026 (Italy)
- Functional Nanostructures – Design & Fabrication - Material science-2026 (Italy)
- Functionally Graded Materials – Tailored Properties - Ceramics 2026 (Italy)
- Material Characterization – Testing & Analysis - Material science-2026 (Italy)
- Metal Alloys – Strength & Durability - Material science-2026 (Italy)
- Metal Matrix Composites – Strength & Durability - Ceramics 2026 (Italy)
- Miniaturization Technology - ADVANCED MATERIALS 2026 (France)
- Molecular biology and Materials science - ADVANCED MATERIALS 2026 (France)
- Nano Materials - ADVANCED MATERIALS 2026 (France)
- Nano Structures - ADVANCED MATERIALS 2026 (France)
- Nano Technology and Photonics Communication - ADVANCED MATERIALS 2026 (France)
- Nanocluster and Nanoscience - ADVANCED MATERIALS 2026 (France)
- Nanocomposites – Functional Applications - Ceramics 2026 (Italy)
- Nanomaterials – Advanced Applications - Material science-2026 (Italy)
- Nanometrology and Instrumentation - ADVANCED MATERIALS 2026 (France)
- Nanoparticle and Nanoscale Research - ADVANCED MATERIALS 2026 (France)
- Nanoparticle Synthesis and Applications - ADVANCED MATERIALS 2026 (France)
- Nanosensors Devices - ADVANCED MATERIALS 2026 (France)
- Nanotechnology-Basics to Applications - ADVANCED MATERIALS 2026 (France)
- Optical Materials and Plasmonics - ADVANCED MATERIALS 2026 (France)
- Photonic Materials – Optical & Electronics - Material science-2026 (Italy)
- Polymer Composites – Lightweight Solutions - Ceramics 2026 (Italy)
- Polymers – Functional & Smart Designs - Material science-2026 (Italy)
- Properties of Nano Materials - ADVANCED MATERIALS 2026 (France)
- Reinforced Composites – Strength Optimization - Ceramics 2026 (Italy)
- Science and Technology of Advanced Materials - ADVANCED MATERIALS 2026 (France)
- Smart Materials – Responsive & Adaptive - Material science-2026 (Italy)
- Spintronics - ADVANCED MATERIALS 2026 (France)
- Structural Composites – Aerospace & Automotive - Ceramics 2026 (Italy)
- Sustainable Ceramics – Eco-Friendly Materials - Ceramics 2026 (Italy)
- Sustainable Materials – Eco-Friendly Solutions - Material science-2026 (Italy)
- Thermal Barrier Materials – High-Temperature Performance - Ceramics 2026 (Italy)
- Thin Films – Coatings & Surface Engineering - Material science-2026 (Italy)
- Wear-Resistant Composites – Industrial Applications - Ceramics 2026 (Italy)
