Synthetic polymers
Synthetic polymers or human-made polymers are those which consist of several repeating structural units known as monomers. Polyethylene is one of the simplest and best known examples of polymers, it has ethene or ethylene as the monomer unit whereas the linear polymer is known as the high density polyethylene. Many polymeric materials have chain-like structures which are similar to polyethylene. The most common uses of polymers of in everyday life are in fabric and textile industries, non stick pans, PVC in pipes and PET bottles that are commonly used. Tyres are manufactured from BUNA rubbers. Polyacrylamide is a water swelling and high molecular weight polymer made from acrylamide monomers. Poly (acrylamide-co-acrylic acid) and its sodium salts (APAM) are widely being used as thickening agent, binder, soil conditioner, filtering properties, flocculating agent, suspending agent, lubrication, and oil recovery agent. One of its biggest uses is waste water treatment. Synthetic polymers have been evolving with new emerging technologies that have taken inspiration from other areas such as biology, such as self healing polymers which heal when damage is done to it which are generally considered irreversible, it is still in development and presents a challenge to produce it in large scale. Other advanced polymers include, nanocomposites and plastic electronics.
- Polyurethene
- Silicone polymer
- Polyamides and polyimides
- Non-ionic polymers
- Polyacrylamide
Related Conference of Synthetic polymers
32nd International Conference on Advanced Materials, Nanotechnology and Engineering
39th International Conference on Materials Science and Engineering
12th International Conference and Expo on Ceramics and Composite Materials
24th International Conference and Exhibition on Materials Science and Chemistry
Synthetic polymers Conference Speakers
Recommended Sessions
- Advanced polymer techniques
- Advanced technologies in polymer synthesis
- Biodegradable polymers
- Biomaterials and Biopolymers
- Bioplastics and Biocomposites
- Commercialization of biopolymers
- Green polymer synthesis
- Nanopolymers and modern day application
- Polymer engineering and models
- Polymer fundamentals
- Polymer manufacturing
- Polymer nanotechnology
- Polymers for energy applications
- Principles of polymer chemistry
- Renewable resources and bio based polymers
- Role of polymers in biological systems
- Solid waste management techniques of polymers
- Synthetic polymers
Related Journals
Are you interested in
- Additive Manufacturing – 3D Printed Materials - Ceramics 2026 (Italy)
- Additive Manufacturing – 3D Printing - Material science-2026 (Italy)
- Advanced Ceramics – High Performance - Ceramics 2026 (Italy)
- Advanced Materials and Functional Devices - ADVANCED MATERIALS 2026 (France)
- Advanced Materials and Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Bio-Ceramics – Healthcare Innovations - Ceramics 2026 (Italy)
- Biomaterials – Healthcare Innovations - Material science-2026 (Italy)
- Biomedical Nanotechnology - ADVANCED MATERIALS 2026 (France)
- Carbon Nanostructures and Graphene - ADVANCED MATERIALS 2026 (France)
- Ceramic Coatings – Wear & Thermal Protection - Ceramics 2026 (Italy)
- Ceramic-Polymer Hybrids – Multifunctional Materials - Ceramics 2026 (Italy)
- Ceramics – High-Performance Materials - Material science-2026 (Italy)
- Composite Materials - ADVANCED MATERIALS 2026 (France)
- Composites – Lightweight & Strong - Material science-2026 (Italy)
- Computational Materials – Modeling & Simulation - Material science-2026 (Italy)
- Energy & Electronic Materials – Functional Ceramics - Ceramics 2026 (Italy)
- Energy Materials – Batteries & Storage - Material science-2026 (Italy)
- Functional Nanostructures – Design & Fabrication - Material science-2026 (Italy)
- Functionally Graded Materials – Tailored Properties - Ceramics 2026 (Italy)
- Material Characterization – Testing & Analysis - Material science-2026 (Italy)
- Metal Alloys – Strength & Durability - Material science-2026 (Italy)
- Metal Matrix Composites – Strength & Durability - Ceramics 2026 (Italy)
- Miniaturization Technology - ADVANCED MATERIALS 2026 (France)
- Molecular biology and Materials science - ADVANCED MATERIALS 2026 (France)
- Nano Materials - ADVANCED MATERIALS 2026 (France)
- Nano Structures - ADVANCED MATERIALS 2026 (France)
- Nano Technology and Photonics Communication - ADVANCED MATERIALS 2026 (France)
- Nanocluster and Nanoscience - ADVANCED MATERIALS 2026 (France)
- Nanocomposites – Functional Applications - Ceramics 2026 (Italy)
- Nanomaterials – Advanced Applications - Material science-2026 (Italy)
- Nanometrology and Instrumentation - ADVANCED MATERIALS 2026 (France)
- Nanoparticle and Nanoscale Research - ADVANCED MATERIALS 2026 (France)
- Nanoparticle Synthesis and Applications - ADVANCED MATERIALS 2026 (France)
- Nanosensors Devices - ADVANCED MATERIALS 2026 (France)
- Nanotechnology-Basics to Applications - ADVANCED MATERIALS 2026 (France)
- Optical Materials and Plasmonics - ADVANCED MATERIALS 2026 (France)
- Photonic Materials – Optical & Electronics - Material science-2026 (Italy)
- Polymer Composites – Lightweight Solutions - Ceramics 2026 (Italy)
- Polymers – Functional & Smart Designs - Material science-2026 (Italy)
- Properties of Nano Materials - ADVANCED MATERIALS 2026 (France)
- Reinforced Composites – Strength Optimization - Ceramics 2026 (Italy)
- Science and Technology of Advanced Materials - ADVANCED MATERIALS 2026 (France)
- Smart Materials – Responsive & Adaptive - Material science-2026 (Italy)
- Spintronics - ADVANCED MATERIALS 2026 (France)
- Structural Composites – Aerospace & Automotive - Ceramics 2026 (Italy)
- Sustainable Ceramics – Eco-Friendly Materials - Ceramics 2026 (Italy)
- Sustainable Materials – Eco-Friendly Solutions - Material science-2026 (Italy)
- Thermal Barrier Materials – High-Temperature Performance - Ceramics 2026 (Italy)
- Thin Films – Coatings & Surface Engineering - Material science-2026 (Italy)
- Wear-Resistant Composites – Industrial Applications - Ceramics 2026 (Italy)
